DEPARTMENT OF ECONOMICS WORKING PAPER SERIES

Consumer Choice under Carbon Rationing

Hans Ehrbar

Working Paper No: 2008-22

August 2008

University of Utah
Department of Economics
1645 East Central Campus Dr., Rm. 308
Salt Lake City, UT 84112-9300
Tel: (801) 581-7481
Fax: (801) 585-5649
http://www.econ.utah.edu




CONSUMER CHOICE UNDER CARBON RATIONING

1.
2.
3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.
5.
6.
7.

HANS G. EHRBAR.

CONTENTS

Formulation of the Problem

Traditional consumer choice solution

The Consumer’s Response to Carbon Rationing
Is the carbon constraint binding?
First-Order Conditions when Carbon is Constrained
Special Case: Renewable Electricity
Solution with Two Carbon-Constrained Goods
Straight Line Trajectories
Curved Trajectories
Solution of the Quadratic Equation
The sign of the square root

Plots of the Trajectories

Perverse Demand Response

‘Phasing In of Renewable Electricity

Summary

References

1. FORMULATION OF THE PROBLEM

Throughout this paper we will use the utility function

(1)

v=egh

—
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where e > 0 is electricity consumption, g > 0 is gasoline consumption,
and h > 0 is carbon-free consumption. Consumers maximize v subject
to the budget constraint (2) and the carbon constraint (3).

(2)
3)

epe+gpg+hpn <M
ege+9qs < a

m is money income and a is the carbon ration, pe, pg, and py are the
prices, and ¢, and g, could be called the carbon footprint of electricity
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2 HANS G. EHRBAR

and gasoline, i.e., the number of carbon allowances which have to be
paid per unit of electricity or gasoline.

We will first solve the utility maximization subject to the budget
constraint (2) but for now ignoring the carbon constraint, and then we
will discuss the full problem. ’

2. TRADITIONAL CONSUMER CHOICE SOLUTION
Lagrange function for utility maximization without carbon constraint:

(4) Le,g,h, ) =egh—A(epe+gpy+ hpr—m)

Since the budget constraint is always binding, the first-order conditions
are the following system of equations:

(5) 4 OL/0e = gh— Ape = 0
(6) oL/8g = eh— Mp, = 0
(7 oL/0h = eg— Mpn = 0
(8) epe -+ gpg+hpr = m

This is easily solved for e, g, h, and A;. Multiply (5) by e, (6) by g,
(7) by h, then add and apply (8): ’

9) 3egh=MA(epe+gpy+hpy) =Xim
therefore

3egh
(10) n =29

Plug this ); into (5), (6), and (7) to get

: hpe 3egh 3egl
(11) gh:3eg P oh— 3€9hP eg— 2C9NPh

m m m

or

1
(12) % =epe or e= 3ﬂ;e or ef:: =3
m_ L 90y _ 1
(13) 3 = 9P or 9= 3, or =3
m m hpn 1
(14) 3= h px, or h= T or — =3

In other words, utility is maximized if exactly one-third of total income
m is spent on each of the goods. Because of this result, we will usually
represent the solution by the vector of shares of income spent on the
three goods. ‘
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3. TuE CONSUMER’S RESPONSE TO CARBON RATIONING

3.1. Is the carbon constraint binding? In our simplified model,
carbon rations which are not used disappear again, i.e., they cannot be
sold or saved. Under this assumption, the first thing a carbon rationed
consumer would do is to compute the utility maximizing solution with-
out carbon constraint, as we just did, and check whether the carbon
ration a is sufficient to sustain this solution, i.e., whether

mge  M{g m (pg Qe - Pe Qg)
15 €Qet+ 99, = + = =— < q.
(15) e T 9% = 3, T 3p, 3.7,
If (16) holds, i.e., if
(16) _C_L_Zaongqe—i_pqu
m 3pepg

then the carbon constraint is not binding. In this case, demand for
electricity, gasoline, and carbon-free goods are given by (12), (13) and
(14). We will call it carbon-bliss, and oy the carbon-bliss allowance,
since consumer choices are not affected by carbon.

3.2. First-Order Conditions when Carbon is Constrained. La-
grange function for the full maximization problem:

L(e, g,k A, da) = egh—Mi(epe + gpg+hpn —m) — Aa(ege+9 gy —a)

First order conditions: if both constraints are binding, the following
system must be solved for nonnegative e, g, h, A1, and Aq:

- (17) oL/0e = gh — MPe — Xage = 0
(18) 9L/0g = eh — Mpg — Aagy = 0
(19) OL/Oh = eg— M\pn = 0
(20) ePe + gpg + hpn = m
(21) eqe+9q, = a

Solve (19) for Ay
‘ eg
22 Al =—
22 ' Pn
Next, plug this A; into (17) and (18):
(23) gh —egpe/ph = Aage

(24) eh—egpy/pn = Aagy
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3.3. Special Case: Renewable Electricity. Now we can quickly
dispense with the special case g, = 0 in which all electricity is carbon-
free. Then (23) says hpn, = ep,, i.e., the same amount of money is
spent on both carbon-free goods e and h. Still assuming the carbon
constraint is binding, g is determined by the carbon equality constraint
(21). Therefore

a m—gpPg m — gPg
25 = — e - —_— h —_ = =
(25) 9= Pe 5 Ph 5
or in terms of income shares, with the notation a = a/m:
(26)
%Z_—_apg EL_D_e:hph:ng—afpgZQg"O‘p_(;:l(l_a&)
m dg m m 2myq, 2qq 2 g
Analogous formulas hold when g, = 0 but g, # 0. These shares are lin-
ear functions of ¢, therefore in the graphical representation introduced
below, the trajectories are the straight lines from b to k. L

3.4. Solution with Two Carbon-Constrained Goods. If ¢. # 0
and g, # 0, multiply (23) by ¢, and (24) by g. to get

(27) ghdg— egpede/Pn=M20e g
(28) ehge — €9DgGe/Ph = A2de g
therefore )\ can be eliminated: -
(29) ghgy —egDeds/Pr =ehde — €gPgqe/Pn
Multiply by pr and rearrange:
(30) hph(g Qg — eQe) =€eg (pe g — Pg Qe)

Now introduce the notation \
(31) ‘t = Pelqg — Pg e
Interpretation: From

i
(32) =L/l
DPgde Py’ Qg

follows: if ¢ > 0 then pe/py > ¢e/qq, One might say the money price of
electricity is higher than the carbon price of electricity. Using ¢, (30)
becomes

(33) hpn(ggy —ege) —egt=0

(33) together with the two constraints (20) and (21) must be solved for
e, g, and h.
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3.5. Straight Line Trajectories. The case ¢t = 0 needs special treat-
ment. If t = 0, (33) implies that either A~ =0 or

(34) : 949 = €de.

If b = 0 then v = 0 and we have a minimum instead of a maximum.
Therefore this can be ruled out, consequently (34) must hold. Plug
this into (21) to get

(35) \ 2eq.=a
i.e., e and therefore also g depends on a in linear fashion:
a €4e a
( ) 2qe Qg 2 dg
In terms of shares, again with a = a/m:
€De O Pe
37 =
(37) m = 7.
gbg _ CPg
38 . —_— =
(38) s
(30) hew _y_ope b
m 2¢e  24qg

Again, these shares are linear functions of ¢, i.e., the trajectories in-
troduced in section 4 are straight lines.

3.6. Curved Trajectories. If ¢ # 0, the math governing these tra-
jectories is a little more tedious. First we eliminate g. The carbon
constraint (21) allows us to express g in terms of e:

a—€eqe
(40) g=
s
Plug (40) into the budget constraint (20):
(41) epe+ (a—ege) pg/qg +hpn =m
collect terms and use t = pe gy — Py ge LAIN:
et
(42) %P9 L 2 L hph=m
dg 4y
Solve for hpp to get
| t
(43) hpp =m — Pe &t
Qg dg

Now introduce the notation

(44) U=mgy— apg
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The parameter 1 has an intuitive meaning as well.

(45) v._m_ 2

Pgqy Pg g
a/qq is the amount of gasoline one can buy if one spends the entire
pollution allowance a on gasoline. m/p, is the amount of gasoline one
can buy if one spends the entire income m on gasoline. One might say,
if u is positive, then the carbon constraint is more binding for gasoline,
and if v is negative, the income constraint is more binding.
Using u, (43) becomes

(46) how =2

g
Plug this into (33) and multiply by gg:
(47) (u—et)gg —ege) —€9gt=0
Use the carbon constraint (21), to eliminate the two ggq:
(48) (u—et)((a—eg)—eqe) —(a—eg)et=0
This can be simplified
(49) (u—et)(a—Zeq;)—(a—eqe)et=0
Now multiply out
(50) au—2eg.u—aet+2e?gt—aet+e’gt=0

Combine duplicate itemé and sort by powers of e:
(51) 3e?q.t—2e(geut+at)+au=0
This quadratic equation defines e. ¢ is defined by (31) and u by (44).

3.7. Solution of the Quadratic Equation. According to (51), e
satisfies a quadratic equation

(52) Ae®>+Be+C=0
with

(53) A=3g.t

(54) —-B/2=at+gu
(55) C=au

B?/4—AC = (at+g.u)®—3ag.ut
(56) =a?t? + v’ —ag.ut
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The solution formula can be written
_ —B++/B?2—-4AC _ —B/2++/B?/4—-AC
- 24 - A

and using the fact, proved in section 3.8, that the negative square root
must be chosen

(57) e

at+geu—+/a?t?+@2u? —ageut
e=
3¢qet

The formulas will become simpler and more symmetric if one intro-
. duces

(58)

(59) V="mge— aPe
Since
(60) geU — qgv =at
the term under the square root becomes
(61) a2t2+q2u2—aqeut=a2t2+qeu(qeu—at)
(62) = (qeu — ggv)* + ¢ ugyV
therefore the formula for e is now
o 2¢u—gu—Q
(63) e= S0t
where
(64) QZ\/(QgU_Qeu)2+QeQQUU
Once e is known, g can be derived from the carbon constraint (40):

(65) ggg=a—ege

_ 2geu—ggv—Q
(66) =a 3t

3at—2¢ut+qu+@Q

67 =
(67) 3t

B 3¢eu—3gqv—2¢u-+qgv+Q
(68) = Y

Therefore the formula for g is

_ Geu—2qv+Q
3qgt

(69)
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Finally h: from (46) and (58) follows:

(70) hp, = L6
dg .
(71) SRCNCE Ll
dg 3 g Qg
(72) :3qeu—2qeu+gg'u+Q
3¢ 4q
(73) _ Zeutgv+@
3¢ Qg
Therefore the formula for h is
(74) h#qeu-i-ggv—l-Q
3Dk Qe dg »
For the income shares we will use the notation
Qe U
(75) T = :n ={e (QQ - apg)
v
(76) y = % =gy (¢e — Pe)

(77) R= %=\/(w—y)2+:ry

This gives the following simple formulas for the shares:

e 20 —y—R
(78) pe:pe_ﬂ_

m 3q.t
9Dy xr—2y+ R
79 g =gy, —
( ) m pg 3QQt
h R
(80) ph:$+y+
‘ m 3Qng

These formulas depend on a and m only through o = a/m. In other
words, if money income and carbon allowance are multiplied by the
same factor, then the shares remain unchanged.

3.8. The sign of the square root. This section contains the proof
that the shares in the above formulas are nonnegative. According to
(16), the carbon constraint is binding if

< Dg e + Pe g

81 o
(81) 3 Pe Dy
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Therefore

_ PgletPely
3pe
3png_nge_peQQ
3pe
2Peqg — Dy Qe
3 e
_ pqu—i—t
(82 | =g P

—opg >

T = (e (Qg - apg) >'Qe

- 4e

From (81) follows also

_pg Ge +Pe Qg

—QPe >
De 37,

therefore

3Py Qe — Py e — Peq
Y=gy (ge — Pe) > gg ——— 3]’;" 220
g
2Dg e — Dey
3pg

e o pemt -
83 L =gyt —
( ) qg 3pg

=qq

Comparing (82) and (83) one sees: if the carbon constraint is binding,
then z and y cannot both be negative.

Proof that the share of h as given in (80) is positive: If both z and y
are positive, then clearly h > 0. Now assume either z of y is negative;
then we have just shown that they cannot be both negative, therefore
zy < 0. This means

(84) 2zy < -2y
(85) P+t +2zy <z’ —ay+y’

or, in other words

(86) (@+y)? < (@-y)’+azy
(87) , lz+yl <(z—y)?2+zc
(88) z+y+R>0

ie., h> 0.
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In order to show that e > 0 we need to rewrite the formulas. Since
z —y = ot and therefore zy = z (z — at), it follows

(89) R=Va2t?+ 22— otz
(90) 2c—y—R=z+at—R
ePe z+at—R
91 -y =
( ) m De 30,1
Now we have to distinguish four cases. (a) If £ > 0 and 2 > 0, then
(92) 2atz > 0> —atz
(93) a2t2—l—2at:c+m2>a_2t2-—ozt:c+:c2
(94)  (at+2)* > R?
(95) lat+ | > R
since t > 0 and z > 0 we can omit the absolute bars
(96) at+z >R
_(97) at+z—R>0

and since ¢ > 0 this implies e > 0.
(b) t > 0 and z < 0 is impossible by (82). -
(c) t < 0 and z > 0: Then

(98) o B ot gate <0< =atz 0 T T
(99) P2+ 2atz+ 2 <t —atz+3°

(100) lat+z| <R

(101) at+z—R<0

(102)

Since t < 0 this implies e > 0.

(d) If t < 0 and x < 0, then clearly ot +z — R <0, and since t <0
this means that e > 0. o _

Since the problem is symmetric in e and g, this proof also showed
that g > 0. :

)

4. PLOTS OF THE TRAJECTORIES

Since the three expenditure shares add to one, they can be repre-
sented in a ternary plot or barycentric plot, by a point in the equilateral
triangle with height one. The e-share is the distance of this point to the
base opposite the e-corner, the g-share is the distance to the base op-
posite the g-corner, and the h-share is the distance to the base opposite
the h-corner. The trajectories in Figure 1 show the movement of the
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shares as the carbon constraint is tightened. The starting point of each
trajectory is the situation a/m = ag, with op defined in (16), where
there are enough carbon allowances that the constraint is not binding,
therefore the shares are represented by the point b = (1/3,1/3,1/3)
in the center of the triangle. As the carbon constraint is tightened,
the point moves towards the upper corner in which no electricity and
no gasoline is used, only renewable goods. For each set of prices and
carbon footprints there is a different trajectory. The five trajectories in
Figure 1 all have g. = 3, p; = 100, ¢, = 1, pp = 10, but they differ by
the electricity price, which is from left to right p. = 900, 400, 300, 100
and 10. The dotted level lines connect the points on the trajectories
with equal values of 8 = a/ap, namely, for § = 0.1,...,0.9. On the
straight trajectory, these lines are equally spaced. _
If prices and carbon footprints are constant, but money income
varies, the trajectory as a whole does not change its shape. Having
money income m and carbon allowance a gives the same income shares
as having money income Am and carbon allowance Aa. However if the
carbon allowance is equal for everybody, then a high income consumer
may be at a point on this trajectory at which the carbon constraint
is highly binding, therefore most of his or her high income must be
"spent on carbon free goods, while a low income consumer may still be

in the center of the triangle regarding the allocation of his much lower
 “incomie to the different goods: Carbon constraints are more onerous
for the rich than for the poor.

eo': .................................................................................................. o g

FIGURE 1. Trajectory of Expenditure Shares as the Car-
bon Allocation Tightens
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5. PERVERSE DEMAND RESPONSE

If one follows the trajectory from the center point outward, o declines
and both z and y rise. At the end of the trajectory, when o =0, =
and y are both positive. But earlier on, it is possible that one of them,
although not both at the same time, are negative. According to (79),

D z—2y++/(z—y)?+zy
(103) 2 —p, @~ y)

3qgt

If z = 0, this becomes

9Py —PgY
104 = = =
(104) m 3qqt

Using the definition (76) of y

(105) 9Py _ —Pgdy(de — OPe) _ XPePg — Pyl

g
m 3qyt 3t

but by the definition (76) of z, x = 0 means ap; = ¢g:

oo gDy PeQg—Pgge t 1
1 25 2. S — o
(106) m 3t 3t 3

In other words, the income share of gasoline purchases is 1 /3. Since
the trajectory begins at the center, where the gasoline share is already
1/3, this means that initially, as carbon rationing sets in, the demand
for gasoline goes up before going down. As the carbon rations tighten,
one must expect that consumers buy more nonrenewable products and
fewer of the carbon products. If they initially buy more gasoline, this
is a “perverse” effect which can only be temporary, and which must
be compensated by an especially precipitous decline in the demand for
electricity. This is an undesirable situation which can only occur if the
relative carbon price of gasoline and electricity differs too much from
the relative money price. If carbon is rationed, a fuel tax or some other
variation of a carbon tax may still have a role to play in order to get
the relative money prices closer to the relative carbon prices.

The same undesirable effect can also happen with electricity pur-
chases. In Figure 1, the point on the trajectory where the income
share of one of the renewables is 1/3, if it exists, is identified by a little
circle. Only the second and third trajectories (from the left) do not
have this circle.
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A

e g

FIGURE 2. Trajectory of expenditure shares with Car-
bon Free Energy Phased In, Fixed Price

h

A,

Goourrer

€

........................................ o g

FIGURE 3. Trajectory of expenditure shares with Car-
bon Free Energy Phased In, Fixed Price

6. PHASING IN OF RENEWABLE ELECTRICITY

In Figures 2 and 3, the dotted curved line from b to h is one of the
trajectories, and the dotted straight line from b to k is the trajectory
for the same prices if the carbon content of electricity is zero. The
solid lines connect intermediate trajectories where again prices are un-
changed, but electricity is progressively decarbonized. Unlike the level
lines in Figure 1, which keep B, the percentage of the carbon bliss
allowance, unchanged, here the carbon allowance alpha itself is kept
unchanged. For now, ignore the little circles on top of the solid lines;
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they will be explained in a minute. Let’s for instance look at Figure
2, which has the parameters p, = 105, ¢, = 1000, p, = 100, g, = 500,
pr, = 10. Initially, consumers have enough carbon allowances to spend
equal amounts of money on electricity, gas, and renewables. This is the
center of the triangle b. Now assume carbon allowance is cut so that
B = 0.4, 1i.e., it is only 40% of the allowance necessary for the bliss point.
This means, consumers have to severely restrict their consumption of
both gas and electricity. Then assume that by a technical breakthrough
electricity suddenly has zero carbon allowance, but the electricity price
pe is unchanged. IL.e., carbon allowances are only necessary for gasoline,
not for electricity. And the carbon allowance which previously was 40%
of the bliss allowance is now enough again so that they can go back
to the carbon-bliss point. But if allowances are cut further so that
they reach 30% of the original carbon bliss allowance or less, then they
must restrict their gasoline consumption: gas consumption is defined
by the carbon constraint, and the remaining income is equally divided

between electricity and other renewables. I.e, consumers migrate now

on a straight line from b towards point & mid-way between e and h.
A similar story for Figure 3, but here the jumping-back point is not
between 40 and 30% of the carbon bliss allowance, but between 70 and
60%.

This scenario tells us: if the tightening of the carbon constraint is

sible. Here we have only talked about green electricity and not green
gasoline. The most desirable outcome would be that electricity and
gasoline are decarbonized in parallel, so that the utility maximizing
point will never stray far away from b. This may require a coordinated
movement of carbon rations and fuel taxes.

Now let us assume the following situation: The electricical distribu-
tion company can buy electricity from two sources: coal electricity has
wholesale price w, and footprint g, and geothermal has wholesale price
wy > wy and zero footprint. We also assume that on a wholesale level
the carbon-free geothermal electricity costs a little more to the electri-
cal distribution company than coal-generated electricity. But in order
to keep our model simple, we assume that the distribution company
cannot change the retail price of electricity (perhaps due to competition
or regulation).

Although electricty price is fixed, the electric utility can choose to
supply electricity at any carbon footprint between 0 (100% geother-

mal) and g, (100% coal). Which mix of geothermal and coal is profit

maximizing for the electric company?
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Here is the math necessary for the profit maximization problem. If
for electricity price p, and footprint g, < g, the demand is £(pe, g.), then

the electric utility company can meet this demand by buying &(pe, ge) %’3—

coal and the rest, i.e., (1 — 2)e(pe, ¢e), from geothermal. Proof: The
total footprint of the outgomg electricity is e(pe, qe) 2 Go = &(Pe, Ge) Ges
and the average footprint distributed over the entire electricity e(pe, )
is therefore g.. With this composition of electrlclty purchases, assume

the distribution company profits 7 are

(107) w=s(pe,qe>pe—e<pe,qe>j—e (1'——>e<pe,qe> -

z

(108) = €(Pe, ¢e) (Pe — %wm —(1- %) wy) =
(109)  =&(Pe, ) (pe — wy + %wy —wy))

This problem was solved numerically, and the results of this profit
maximization are indicated by the little circles on the isocarbon lines
in Figures 2 and 3. '

Look at Figure 2. Initially, with 8 = 0.8 or higher, the distribution
company will switch to 100% geothermal, since the profits at the bliss
point even with the higher wholesale cost of electricity, are higher than

t’hcse*on*cheﬁrestrictedJcrajectory*with*t*hefl'ower*wholesaulefeostfbu—tfa;lso—
lower total sales of electricity.

But if the carbon allowance falls to 8 = 0.7, it is no longer rational
for the distribution company to completely switch to geothermal. Now
the profit maximum lies at a mixture between coal and geothermal.
In other words, with the tightening of the carbon constraint, first the
wholesale demand for coal-fired electricity abruptly falls to zero. Be-
ginning with 8 = 0.7, demand makes a temporary recovery, but after
B = 0.4 it gradually declines again. Soon after § = 0.1, demand for
coal-fired electricity is back to zero.

Figure 3 does not have this reversal. Demand for geothermal elec-
tricity is zero until the carbon constraint is down to § = 0.4, and after
this, geothermal demand gradually rises at the expense of the demand
for coal electricity. Demand for coal electricity falls to 0 when the
carbon constraint is less than § = 0.1.

What is the lesson of this? On the one hand, we have obtained the
reassuring result that carbon constraints can make geothermal elec-
tricity competitive with coal (as long as its wholesale price is less than
the retail price of electricity). But if the good with the larger car-
bon footprint overtakes the other good and becomes the good with the
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smaller carbon footprint, then the profit motive can lead to large shifts
in demand.

7. SUMMARY

The idea behind carbon rationing is: profit maximization leads to
distortions, but profit maximization under carbon rations is not much
worse than profit maximization without carbon rations and at least it
gets things done in a carbon-constrained way. The above mathemat-
ical exercises suggests that the disadvantages of profit maximization
become apparent if the carbon constraint changes over time. Such
change can lead to sudden shifts in demand, as one kind of distortion
is replaced by a different kinds of distortion.
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