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Abstract 

In this paper, we present new findings that validate earlier literature on the apparent 
segmentation of the US earnings distribution. Previous contributions posited that the 
observed distribution of earnings combined two or three distinct signals and was thus 
appropriately modeled as a finite mixture of distributions. Furthermore, each component 
in the mixture appeared to have distinct distributional features hinting at qualitatively 
distinct generating mechanisms behind each component, providing strong evidence for 
some form of labor market segmentation. This paper presents new findings that support 
these earlier conclusions using internal CPS ASEC data spanning a much longer study 
period from 1974 to 2016. The restricted-access internal data is not subject to the same 
level of top-coding as the public-use data that earlier contributions to the literature were 
based on. The evolution of the mixture components provides new insights about changes 
in the earnings distribution including earnings inequality. In addition, we correlate 
component membership with worker type to provide a tacit link to various theoretical 
explanations for labor market segmentation, while solving the problem of assigning 
observations to labor market segments a priori.  
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Introduction

Schneider (2013) proposed that a finite mixture distributional model may be used to

reconcile economists traditional intuitions about the shape of the distribution of income

with physicists’ more recent findings that incomes appear roughly exponentially distributed

up to relatively high levels. Using CPS data, the author showed that based on a variety of

fit criteria a finite mixture model consisting of an exponential component and a log-normal

component fits the data better than either the exponential or the log-normal distributions

alone, and better than most alternatives. Schneider (2015) critically revisits the physics

literature on the distribution of income and verifies the earlier finding using IRS tax data.

In fact, the finite mixture model performs on par with the commonly used generalized beta of

the 2nd kind (GB2) distribution used by Feng, Burkhauser, and Butler (2006), Burkhauser,

Feng, Jenkins, and Larrymore (2008), Jenkins (2009).

In this paper, we show that the results presented in Schneider (2013) are robust by using

internal Census data that is top-coded at a much higher reporting threshold than the public-

use data used in the original paper. Specifically, we pick up the research question whether the

US income distribution can be characterized by a mixture of frequency distributions that has

finite components and that is stable with respect to the number and type of components. In

addition to using data with a much higher top-code limit, we provide fits over a much longer

period and provide stronger evidence for the long-run stability of the functional features of

our model.

The changes in the parameter estimates provide novel insights about the evolution of

the income distribution from 1975 to the present. Both Schneider (2013) and Schneider

(2015) asserted that the components of the mixture model have more intuitive economic in-

terpretations than more complicated distributions like the GB2. In what follows, we provide

a cursory overview of the literature, briefly outline the intuition behind the specific two-

component mixture model, and discuss a variety of unresolved issues. We then present the
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results for the exponential-log normal mixture based on internal Census data for earnings

from 1974 to 2016.

Our project adds to a growing recent literature using publicly available IRS and CPS data

to estimate finite mixture models with distinctive components, yielding remarkably accurate

fits of the observed frequencies (Dragulescu and Yakovenko, 2001, Yakovenko and Silva, 2005,

Yakovenko, 2007, Shaikh, Papanikolaou, and Wiener, 2014, Schneider, 2015). These models

e↵ectively identify the presence of at least two distinct and formally persistent “signals”

in the U.S. distribution of income: a power-law distribution for high-income individuals

(Parker and Fenwick, 1983, Fichtenbaum and Shahidi, 1988, Bishop, Chiou, and Fromby,

1994, Champernowne and Cowell, 1998, Yakovenko, 2007, Philip Armour, 2014) and an

exponential. Schneider (2013) and Schneider (2015) further suggest the possibility of an

additional log-normal component in the mixture. Since all the work in this literature relies

on publicly available data, a verification using the restricted-access data available through

the US Census Bureau constitutes an important contribution, not least of all because top-

coding and binning procedures for the public-use data periodically change over time. While

the work cited above takes great care to adjust appropriately, there is no substitute for the

richer restricted-use CPS ASEC data covering a longer study period.

Background

Dagum (1977) contrasted two approaches in inquiry into the observed frequency distri-

butions of income, defined by whether those distributions are taken to represent a tractable

expression of the processes conditioning individual incomes or simply fit a shape to the

observed distribution. Much recent work e↵ectively rejects the proposition that there is

a tractable connection between the best fitting functional form of a distribution fit to the

data and the underlying generating mechanism. That is, the observed shape of the distribu-

tion of income is not held to reveal insights about the workings of labor markets. Current
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approaches instead emphasize the identification of the best-fitting general shapes for the

observed distributions, paying little attention to what this may imply for economic theory.

Explanatory parsimony is downplayed in favor of goodness of fit. The limit of this approach

is a non-parametric fitting of the observed distribution, but in application it is more com-

mon to use a very flexible parametric distribution like the GB2. A good representation of

researchers working in this second paradigm is given by Feng et al. (2006), Burkhauser et al.

(2008), Jenkins (2009). While these more flexible models tend to provide a good fit to the

empirical data, they provide little in the way of a theoretical explanation of the generative

processes and a priori exclude the possibility of multiple distinct labor markets each with

their own statistical signature. Before revisiting why this appears to be the preferred ap-

proach at present, we want to outline the alternative, which is the focus of this paper, has a

long pedigree in the history of economic thought.

The alternative approach seeks to understand well-fitting distributions as expressions of

the underlying market processes generating income. Work following this approach seeks to

establish analytical linkages between the distribution(s) it identifies and plausible economic

behavior or functioning. Parsimony and the ability to inform economic theorization are the

central principles of analysis. This approach mirrors the methodological approach physicists

take to studying distributional data. Its history parallels the history of advances in Statistical

Mechanics, where the Principle of Maximum Entropy allowed formal consideration of the

relationship between the micro-level “laws of motion” governing the interactions between

individual particles and the macroscopic properties of large collections of particles, including

the distributions of certain quantities across particles.

The earliest contributions in this tradition date back to the turn of the last century. Vil-

fredo Pareto devoted considerable e↵ort to the construction of income and wealth frequency

distributions for several countries, leading to his discovery at the very top of income ranges

of the kind of “fat tail” distributions that today bear his name. Pareto postulated this com-
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mon distribution constituted a fundamental “social law” in capitalist economies. This work

was furthered by Gibrat (1931), who considered that the growth of enterprises followed geo-

metric processes, which he associated with log-normal distributions for their size. Analogous

multiplicative “laws of motion” were soon put forward for income-generating processes and

linked to specific predictions concerning individual distributions of income. Kalecki (1945)

pointed out that such a process (e.g. if experience and education increase worker skill in a

multiplicative, rather than additive, fashion) could lead both to log-normal and to power-law

distributions (see also Sutton (1997)).

Problems for this approach arose by the middle of the 20th century, when Lydall (1959)

showed that the observed distribution of income did not appear to be log-normal. More

recent contributions grounded on this methodological approach have consistently uncovered

evidence for power-law behavior among high incomes and rejected the proposition that in-

comes were log-normally distributed, but they failed to settle on a convincing fit for the bulk

of the distribution (Dagum, 1977, Bordley, McDonald, and Mantrala, 1997, Champernowne

and Cowell, 1998). The shift towards simple shape-fitting was at least partially motivated

by the perceived failure to conclusively identify how the bulk of incomes are distributed.

One casual justification for shape-fitting was a collective resignation that the observed dis-

tribution of income pooled the outcomes from many di↵erent process. Given a su�ciently

large number of diverse processes, any distributional shape could arise and identification of

a best-fitting distribution would be a futile endeavor.

Concurrently, economists developed ideas about labor market segmentation that on the

one hand would indeed suggest that the observed distribution of income pools observations

from di↵erent processes, but also that the number of processes is finite and limited in number.

Furthermore, one can extrapolate that each process has distinct features, so that under the

assumption that markets are entropy maximizing process (Foley, 1994), each labor market

segment should be assumed to produce a distinct stable distributional signature. However,
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this line of reasoning was not pursued until Schneider (2013).

Partially, this may have been because one version of labor market segmentation, the

“dual labor market” theory of Reich, Gordon, and Edwards (1973), pursued a more narra-

tive approach for characterizing the qualitative di↵erences between labor market processes.

Other explanations for segmentation provided formal models, but none of them explored

the implications for the stable shape of the observed distribution (see Weitzman, 1989, for

example). This reflects in part a disciplinary limit in how economists tend to think about

equilibrium. Economists instinct is to think of prices as uniquely determined and thus any

distribution of prices to only reflect some underlying distribution of determinants (e.g. innate

ability, human capital, etc.). It is exactly in this regard that (Foley, 1994) o↵ers the novel

deviation by showing what happens when the restriction that agents only make maximizing

exchanges is relaxed to allow all Pareto-improving exchanges. The result is that a statis-

tical equilibrium distribution of prices emerges that is the result of an entropy maximizing

process. The empirical implication is that if we can identify the distribution consistent with

this statistical equilibrium, it can help us characterize the specific features of the underlying

market process as the constraints in an entropy maximization program (MaxEnt).

This approach, however, also immediately implies some intellectual limitations. The

reverse implication of the this approach is that any process that is consistent with the iden-

tified constraints in the MaxEnt program is a possible explanation for the data. That is,

this approach allows us to demarcate between theories that have distinctly di↵erent distribu-

tional implications, but not between theories that have the same distributional implications.

For instance, after convincing themselves that incomes appeared exponentially distributed,

physicists have posited a conservation law for the total wage-bill while economists (who reject

this notion) might point to the mean-preserving growth or a “social scaling” mechanism (dos

Santos, 2017). Since all of these are consistent with the exponential arising as an entropy

maximizing distribution in statistical equilibrium, the observation of the exponential cannot
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help di↵erentiate between these hypotheses. Only additional information that leads us to

favor the premises behind one position over the others could be used to demarcate between

them.

It may seem like a basic point, but it has direct bearing on the results we are presenting

in this paper and how we interpret them. Specifically, we show empirical evidence for the

number and plausible type of distributional components, but do not endeavor to discrimi-

nate which plausible explanation for labor market segmentation may be ruled out by these

findings. More work needs to be done to answer this broader question with any satisfaction.

Su�ce it to say for the purposes of this paper that there several explanations for segmenta-

tion have been put forth and we remain agnostic about which one we favor. More detailed

investigation may reveal that not all can be reconciled equally well with our findings, but

confounding the issue is that they may also not all be mutually exclusive.

For concreteness, the main competing theories we have in mind include the narrative

proposed by Reich et al. (1973) that describes a primary labor market bifurcated into subor-

dinate and independent jobs and a secondary labor market comprised of unstable low wage

jobs. Weitzman (1989) proposed a formal model based on wage stickyness and uncertainty

about labor demand that he suggests is consistent with Reich et al. (1973).1 The thrust of

Weitzman (1989)’s model is that two strategies employer strategies evolve and may exist in

what he calls sticky wage stochastic competitive equilibrium (p. 127): some employers o↵er

higher wages to maintain a stable work force, which works because they also commit to

higher per employee capital intensity in production, while other employers insure against

economic uncertainty through a low-wage / low-capital intensity strategy in order to “thrust

the burden of unstable business on a casual work force.” (p. 123) Perhaps most importantly,

Weitzman (1989) argues that the emergent pattern of segmentation is likely to be largely in-

1Weitzman (1989) concedes that his model is su�ciently abstract to be consistent with a number of
di↵erent explanations.
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dependent of any initial skill distribution, because any arbitrary sorting into one or the other

kind of job can result in an employee being labeled in a way that proves self-reenforcing.

In particular, this leaves open a mechanism for characteristics that are unrelated to

actual productivity di↵erences to become determinant of a worker’s employment trajectory.

Economic stratification (see Jr., Hamilton, and Stewart, 2015), for example, seems like an

easily reconcilable feature of the kind of segmentation described by Weitzman (1989), where

implicit bias, previous wages, di↵erential educational opportunities, etc. all serve as the

kind of self-fulfilling labeling system that sorts female and minority workers into lower-

wage, precarious employment. A somewhat di↵erent argument for a similarly racialized

segmentation is given by Temin (2017), who suggests that the US is regressing towards a

dual economy as characterized by the Lewis model originally proposed to explain disparate

sectors in developing countries. There are clear di↵erences in this conception from the one

o↵ered by Weitzman (1989)’s model,2 though it is unclear to us whether these di↵erences

might not be reconcilable.

Dickens and Lang (1993) make the point that any of the diverse appeals to segmenta-

tion are a counter to standard human capital theory as an explanation for wage dispersion.

For instance, they di↵er from search-theoretic explanations for wage dispersion, like Mont-

gomery (1991), that tend to either assume or conclude that there is a strict correlation (if

not outright equality) between individual worker’s pay and they productivity, taken as ex-

ogenously determined. This still applies when one reads the authoritative Acemoglu and

Autor (2011), who posit wage dispersion in a perfect labor market as a consequence of skill

di↵erentials. The key point for the present work is that we look for a statistical signature

of segmentation that goes beyond simply the level of wage dispersion. Our interpretation of

2Not least, the Lewis model posits that the marginal product of labor in the less developed sector is zero
(or approximately zero), whereas the individual worker’s marginal product is actually irrelevant in Weitzman
(1989).
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labor market segmentation is that it implies a finite set of qualitatively di↵erent signals in

the overall observed distribution of income from labor, which is a more concretely testable

claim than simply o↵ering di↵erent explanations for an observed growing dispersion between

the incomes of di↵erent workers.

It appears, however, that this was not fully recognized by the advocates for labor market

segmentation either. Osterman (1975) recognizes the identification problem resulting form

sorting worker-observations a priori and Dickens and Lang (1993) directly address the senti-

ment that labor market segmentation is an untestable proposition. In fact, Schneider (2013)

attributes the recent stagnation of this line of work to the failure to consider finite mixture

models, which o↵er a systematic approach for testing the evidence in favor of segmentation

without the pre-sorting problem discussed by Osterman (1975). The core idea is that since

di↵erent labor market segments operate in a qualitatively di↵erent ways, thus generating

di↵erent stationary distributions, comparing the fit of di↵erent specifications of a finite mix-

ture model3 can reveal both the number and type of segments evident in the data. This

paper, however, does not present the comprehensive investigation with respect to number

and type of segments supported by the data, but more modestly looks at the robustness of

the results presented by Schneider (2013) using a richer dataset over a longer period.

Recent work by Lubrano and Ndoye (2016), Anderson, Farcomeni, Pittau, and Zelli

(2016), Anderson, Pittau, Zelli, and Thomas (2018) has applied finite mixtures models to

labor market data. While this research has clearly made important contributions to the un-

derlying statistical methodology of finite mixture models it has remained pragmatic about

the particular distributional form used, often employing the log normal distribution due to

its convenient statistical properties. The ambition of this paper is apply the same statistical

methodology of finite mixture models while also giving serious consideration to the distinct

3What amounts to a spectral analysis of the earnings distribution.
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characteristics of each component. This approach leads us to consider the statistical dis-

similarity of each labor market segment. Our results thus extend the work of Lubrano and

Ndoye (2016), Anderson et al. (2016, 2018) to the use finite mixture models with diverse

components.

Specific Model

Both the narrative theory of Reich et al. (1973) or the model by Weitzman (1989) posit a

labor market segment that matches workers to positions that fundamentally do not rely on

the individual attributes of a given worker. These may be positions described as “low-skill”

(or better, highly routinized) where workers filling them can be treated as homogeneous

not because they are, but because their attributes and skills matter very little to getting

the job done, thus a relatively constant wage should prevail. As Weitzman (1989) makes

clear, the key feature of this segment is that workers absorb all uncertainty and thus pay

fluctuations from one period to the next. As we will argue, this combination of relatively

constant wage and high earnings churn as the result of precarious employment (or at least

hours) is quite consistent with an exponential distribution of earnings. By contrast, another

labor market (itself perhaps bifurcated) does match employers and employees based on the

individual worker’s work history. Here, the multiplicative combination of past experience

(and pay) should give rise to either a log-normal or power-law distribution of wages.

We further posit that looking at earnings, we are necessarily conflating the wage and

the number of hours worked. However, workers in the latter segment are much more likely

to hold full-time positions with an expectation of 40 hours of work per week. Variations in

hours is likely to be much less than variation in wages and thus the distribution of incomes

should be expected to largely reflect the distribution of wages. On the other hand, workers

who fill positions that simply require a body are more likely to occupy jobs with less than

full-time hours and have highly variable hours across the year. (Seasonal hires in retail,
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services, or agriculture for example.) For this segment, variation in incomes is more likely

come from the hours worked than the wages paid. We speculate that it is this latter labor

market segment that is captured by the apparent exponential distribution of low to moderate

incomes discovered by physicists in the early 2000s (see Dragulescu and Yakovenko, 2001,

Yakovenko and Silva, 2005, Yakovenko, 2007). Rather than a conservation law of money

(as the physicists in question postulated), we posit that the exponential reflects a relatively

constant overall demand for basic labor with a lot of dynamic churn across sectors in a given

year as to where exactly basic labor is required.

A simple preliminary test to see if this line of reasoning might prove salient is to see if

the specific components in our mixture model are correlated with the appropriate worker

type (full-time or part-time). If it is indeed the case that part-time workers dominate the

exponential component of the mixture, it also provides a link to the framing provided the

literature on stratification. That literature has shown that who performs basic labor in

the economy – defined by low wages, no benefits, variable hours below full-time – is highly

gendered and racialized. Contrary to the popular belief that part-time jobs paying the

minimum wage are filled predominantly by high schoolers getting their first work experience,

they are much more likely to employ men and women of color past high-school age. If the

correlation between worker type holds, it will warrant further investigation whether the

expected correlation with worker race and gender also holds, and this will reveal exactly

who occupies each of the labor market segments that we identify. It also gives credence to

the role of “labeling” mechanisms postulated by Weitzman (1989).

While these considerations present valuable directions for future research, they are beyond

the scope of the present paper, which simply shows how an exponential-log normal mixture

fits the observed distribution of income, that this fits is stable across a relatively long period,

and then tests the correlation between worker type and mixture component to show that

indeed part-time workers dominate the exponential component of the mixture.
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Methodology

We follow the innovations by Borzadaran and Behdani (2009), Scharfenaker and Semie-

niuk (2016), Scharfenaker and Foley (2017), Shaikh et al. (2014), dos Santos (2017) that

draw on Information Theory and Statistical Mechanics to develop economically meaningful

accounts of these inferred distributions. In relation to individual income, the observation

of frequencies that are consistently well-described by a specific functional distribution al-

lows the use of the Principle of Maximum Entropy to infer the aggregate, mathematical

forms taken by the processes shaping those distributions. Those will be given by the ag-

gregate constraints defining the statistical ensemble over which the observed distributions

are entropy maximizing, as argued by E. T. Jaynes. In many instances, it is possible to

advance plausible economic processes capable of generating such constraints. For example,

exponential distributions may provide evidence that wage incomes embody the competitive

“social scaling” of unobservable measures of physical productivity and bargaining power over

money wages, as argued in dos Santos (2017); log-normal distributions may in turn reflect

a stochastic evolution of income that is on average proportional to previous income. It is

thus likely that distinct “signals” in the observed distribution of income reveal the existence

of formally distinct modes of income appropriation in line with the theory of labor market

segmentation.

A nuance to this approach is to recognize that while it may be the case that the under-

lying market processes are entropy maximizing (as argued by Foley, 1994, for instance), the

Principle of Maximum Entropy put forth by E. T. Jaynes suggests that the solution to a pro-

gram that maximizes Shannon’s entropy is relevant even if the process is not strictly entropy

maximizing. Even in this case, the MaxEnt solution presents the most probably description

– barring the incorporation of explicit information of the actual process. Put di↵erently, the

MaxEnt solution imposes the least restrictive prior when the underlying when it is not known

whether the underlying process is entropy maximizing or not. The twist to this underlying
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the present investigation is that we assume each mixture component (corresponding to a

distinct labor market segment) is best modeled as a maximum entropy distribution, while

we do not make any assumptions whether the number of components is somehow entropy

maximizing.

Data

Like Schneider (2013), we use CPS person-level earnings data from the ASEC (March

Supplement). The variable WSAL-VAL combines wage and salary income across multiple

jobs, but excludes self-employment income as well as non-labor income. Because of avail-

ability issues, Schneider (2013) was limited to a series of public-use data from 1996 to 2007.

Furthermore, the public-use data was subject to relatively low top-code limits that were

accounted for in the estimation by using the top-code limit as a censoring limit and using

the top-code flag as a count of censored observations.

The analysis in this paper uses restricted-access CPS ASEC data gathered from the

Federal Statistical Research Data Center (RDC). With this restricted-access data we can ex-

amine the WSAL-VAL variable from 1974 to 2016 which is also subject to a much higher (less

restrictive) top-code limit. We still treat top-coded observations as censored and make the

appropriate adjustment in our maximum likelihood estimations, but our robustness checks

indicate that this has only a minor (and not economically meaningful) impact on the actual

estimates.

Top-coding is potentially a major limitation when using the publicly available data.

The variable used in our study, WSAL-VAL, is the sum of two variables recorded during

data collection: ERN-VAL and WS-VAL, or earnings from primary and secondary jobs

respectively. According to the CPS documentation, these variables are top-coded before

they are added to create WSAL-VAL. If one or the other, or both, earnings components

are top-coded, it is di�cult to model the uncertainty that is being introduced through the
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truncation procedure. Schneider (2013) dealt with this by dealing with all observations

that contained a top-coded value as censored and using the top-code as the censoring limit.

Since we are using restricted access data, this is not an issue in the work presented in this

paper beyond the censoring of the data above the internal recording limit already mentioned.

For more information on the topcoding issue, see Larrimore, Burkhauser, Feng, and Zayatz

(2008).

There are several procedural changes to the CPS ASEC dataset during the study win-

dow,4 two of which deserve explicit mention. First, data collection changed from paper-and-

pencil to computer assisted in 1993. Along with this change, certain recording limits on

income variables were adjusted; most relevantly for us, earnings up to $999,999 were now

recorded. There were also expected adjustments to implement the 1990 Census population

controls in 1992 and further adjustments in 1994 to update the sample design. All together,

the changes made in this period appear to produce a notable “jump” in some estimates

presented in this paper (similar jumps are seen in Larrimore et al., 2008, Schneider, 2013,

2015, for example). There was also a significant redesign in 2014 of the CPS ASEC, but it

does not appear to produce the kind of discontinuity that resulted from the changes in 1993.

Second, there is a large change in sample size in 2002. From 1975 to 2001, the CPS ASEC

contained 60,000 to 87,000 raw observations; from 2002 to 2008, over 100,000 observations

were recorded before it slowly declined back down to 87,000 by 2017. However, the March

supplement weights used to match the CPS ASEC sample to the larger CPS and last Census

seem to successfully adjust for variations in sample sizes such that estimates do not seem to

fluctuate with sample size in any notable way because the sample weights, MARSUPWT,

su�ciently ensure that samples remain representative of the population.5

4
https://www.census.gov/topics/income-poverty/income/guidance/cps-methodology-changes.

html

5We suspect that Larrimore et al. (2008) may understate the impact of topcoding by focusing on the
number of observations subject to topcoding, not their population weight. Since the weights are in principle
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The publication of cell means for the topcoded observations starting in 1996 and the

subsequent series of cell means for 1976 to 2005 produced by Larrimore et al. (2008) permit

a back-of-the-envelope estimation of the fatness of the tail. If we assume that the upper tail

follows a power-law (which is not reflected in our model), then the cell mean has a straight-

forward relationship to the topcode limit and the power-law parameter ↵. Specifically, if

x

TC

is the topcode limit and x̄

CM

is the cell mean, then:

↵ =
x̄

CM

x̄

CM

� x

TC

(1)

This quick method of estimating the power-law coe�cient is only available until the 2010.

After that, the public-use data contains income values subject to topcoding, but they where

randomized across similar observations. From 1975 to 2009 (adjusting for the fact that

the 2010 CPS ASEC asks about income earned during the previous year), the estimated ↵

decreased from over 4 to around 2 as seen in figure 1, implying that the tail of the earnings

distribution got a lot fatter. The obvious implication is that inequality increased driven by

very high incomes, consistent with the trends described by Piketty (2014) among others.

One important point to keep in mind is that the values censored by the internal reporting

limits are used in the calculation of the cell means. So for example, a person reporting an

income of more than $100,000 from their primary job would be captured as having earned

$99,999 and the corresponding cell mean would have been calculated using that lower value.

The power-law coe�cient estimates based on the cell means therefore likely represent a

lower-bound estimate to the fatness of the right tail of the distribution of earnings.

In the model we fit to the data that will be described in the next section, we do not allow

an adjustment for under-sampling, a single observation subject to topcoding may have a significant impact
on estimates if it is appropriately weighted.
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Larrymore et al (2008)
(151A)

Larrymore et al (2008)
(ERN-VAL)

Census (ERN-VAL)

1980 1985 1990 1995 2000 2005 2010
Year

1

2

3

4

5

6

α
Power-Law Coefficient Estimate

Figure 1: Rough estimate of the “fatness” of the right tail of the primary earnings distribution based on
cell means provided by Larrimore et al. (2008) for 1976 to 2002 and part of the CPS ASEC dataset from
2003 to 2010. Estimates are based on the cell mean for male non-Hispanic / black full-time observations.

for a power-law tail for earnings and we make no attempt to test whether high earnings are

better fit by a power-law or the log-normal in this paper. Without a rich set of observations

from the right tail of the distribution, distinguishing between a power-law and log-normal

tail can be statistically di�cult. Furthermore, our mixture model may exacerbate the identi-

fication problem as the tails of the components are allowed to overlap. That said, we believe

there is reason to think that our implicit assumption that the log-normal is su�cient to

capture the thickness of the right tail of the earnings distribution may be wrong and that we

therefore systematically understate inequality driven by top incomes through our estimates.

Correcting for this is part of our continuing work.

Model

The basic idea of using a finite mixture model (FMM) is that the observed data pools

random draws from several di↵erent underlying distributions.6 In our case, each underlying

distribution that is a component of the mixture represents a di↵erent earnings generating

6See McLachlan, Lee, and Rathnayake (2019) for an overview of FMMs.
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mechanism, where the di↵erence could be one simply of scale or a more fundamental di↵er-

ence. By varying the component types being considered in addition to the number of mixture

components, we can allow for heterogeneity both in terms of the number of segments as well

as their underlying generating mechanisms.

Since we are looking at fundamentally one-dimensional data (income), such mixture

models are relatively straightforward to estimate using Maximum Likelihood Estimation

(MLE) and this is typical in the literature.7 In general we specify the total distribution

of income as X where p[x] is a probability density function of X such that p[x] � 0 and
R
p[x]dx = 1. Assuming the distribution of income is generated by a K-component finite-

mixture distribution, this impliesX is a linear combination ofK component density functions

each with a respective weight �
k

(s.t.
P

K

k=1 �K

= 1), and each parameterized by a vector ✓
k

.

The probability density assigned to making the observation x

i

is therefore given by:

p[x
i

|✓1, . . . , ✓k] =
KX

k=1

�

k

p

k

[x
i

|✓
k

] (2)

This model defines a likelihood for the N observed incomes {x
i

}
N

conditional on the

K-component mixture model:

p[{x
i

}
N

|✓1, . . . , ✓k] =
NY

i=1

KX

k=1

�

k

p

k

[x
i

|✓
k

] (3)

The discovery that a finite mixture model provides a thorough and stable statistical de-

scription of the distribution of income shows that heterogeneity inherent in labor markets

and allow us to obtain good estimates of the evolution of the parameters for each distribu-

7Lubrano and Ndoye (2016) details some of the benefits from Bayesian methods as well.
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tional form we identify as well as of their relative weights in the overall distribution. The

result is that each labor market segment is endogenously determined by the data itself.

The specific model we fit in this paper is the two-component exponential-log normal

mixture model first applied to publicly available CPS data in Schneider (2013). This model

takes the following four parameter form:

p[x
i

|↵, µ, �,�] = �Exp[x
i

|�] + (1� �) lgN[x
i

|µ, �] (4)

The use of finite mixture models thus allows for overlapping distributions without ad

hoc sorting of workers into each proposed segment (see Osterman, 1975) with hard cut-o↵

incomes as is common in existing literature (see Dragulescu and Yakovenko, 2000).

To test what type of worker falls into each component of the mixture, we can estimate

the component weight, �, as conditional on worker type. For the initial analysis presented

here, we use an administrative dummy variable that codes all workers reporting that they

typically work less than 35 hours per week as “part-time” (PT) and all workers that typically

work 35 hours or more as “full-time” (FT). The conditional expression of � is simply:

� = �0 + �1 FT (5)

The estimated propensity for a PT worker to be in the exponential component of the

mixture is therefore given by �̂0 and that of a FT worker by �̂0 + �̂1. If PT workers in-

deed dominate the exponential component of the mixture, then we expect a negative and

statistically significant estimate of �1.

19



Model Results

For the sake of brevity, we do not present formal fit comparisons to other models in this

paper and instead concentrate on interpreting what the fit of the proposed mixture model

given by equation (4) tells us. However, based on Schwarz’s Bayesian Information Criteria

(BIC), the mixture model provides an overwhelmingly better fit of the earnings data than

either the exponential or log-normal components alone. It also provides a better fit than

the Gamma distribution, which only very modestly improves on the fit of the exponential.

The GB2 distribution does provide a better fit of the data, which we largely attribute to its

greater ability to fit a power-law tail.8 A systematic evaluation of the best model specification

is part of our ongoing project.

Figure 2 and 3 plots the evolution of the estimated model parameters (ML estimates are

detailed in Appendix A). The parameter � is the inverse of the exponential scale parameter

and is the mean of the exponential component of the mixture model. Both µ and � are

adjusted for inflation using the CPI.

We now note a few trends in the parameter evolutions and provide some interpretation.

The scale parameters of both components of the mixture, when adjusted for inflation, decline

over the period 1975 to 2017. This is consistent with stagnant median incomes and slow

growth in mean incomes. What our model adds is that mean and median incomes captured

in the exponential component declined significantly since 1975 (see the top right panel in

fig. 2). If, as we speculate, the exponential component is dominated by workers earning the

minimum wage or near it, then this makes sense as the minimum wage persistently eroded

in real value from its peak in 1968.

The decline in µ (bottom left panel) is less precipitous and more steady, consistent with

the log-normal component reflecting somewhat less precarious employment. The implication

8Schneider (2013) using the public-use data and a di↵erent fit criteria found that the GB2 and the
exponential / lognormal mixture provided comparable fits of the data.
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Figure 2: Parameter estimates for the exponential component in the mixture. The shaded region extends
two standard errors above and below the line of point estimates.

is still a declining real value of median income for this component. The rise in �, the shape

parameter of the log-normal component, indicates that inequality in that component increase

considerably as did the real mean income associated with it. Overall, these parameters

therefore indicate a falling behind of the labor market segment captured by the exponential

component in addition to growing disparity within the labor market segment captured by

the log-normal component.

An unexpected result is that the weight of the exponential component is declining steadily

over the entire period. We do not yet have a good explanation for this, although it may

reflect that part-time basic labor simply does not pay su�ciently well in real terms. Notable

is that the growth in the labor force (estimated from the sum of the weights used in the

analysis) o↵set this decline until around 1990, so that the number of workers associated with

the exponential component remained relatively constant from 1975 until 1990. After 1992,
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Figure 3: Parameter estimates for the log-normal component in the mixture. The shaded region extends
two standard errors above and below the line of point estimates.

the number of workers in the exponential component declined from around 30 million to 20

million because labor force growth slowed. (Note that the trend in � shown in the top left

panel does not show a notable change around 1990-1992.)

1980 1990 2000 2010
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Figure 4: Cyclical variation in HP filtered � against NBER business cycles.
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We want to also note that according to Weitzman (1989)’s interpretation of his model,

we should expect the share of more contingent and precarious workers to rise at the on-

set of a recession as employers switch to production strategies that shifts risk to workers.

Since we speculate that such workers are represented by the exponential component of the

mixture, this provides a testable hypothesis about the cyclical movement of the exponential

component’s weight (�). While there are not enough business cycle downturns in our study

window to form any firm conclusions, the prediction does appear consistent with the cyclical

movement of �: each of the downturns in our data are associated with a temporary increase

�.

For further clarity we compare the density evolution of the income distribution as cap-

tured by the model in Figure 10 for 1974 and 2016.

0 20000 40000 60000 80000 100000
Earnings ($2016)

1974 2016

(1974 & 2016)
Fitted Earnings Density Function (Mixture)

Figure 5: Fitted earnings densities for 1974 and 2016 illustrating the evolution of the distribution of incomes
based on the two-component mixture. The thin dashed lines show the components for 1974 (weighted by �)
and the thin solid lines show the components for 2016.
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Correlation with Worker Type

As described above, we can re-estimate the model allowing � to be conditional on worker

type (PT or FT); shown in figure 6. The estimated population proportion of FT workers

(workers who report working 35 hours or more during a typical week) fluctuates with the

business cycle between 82.5% and 86% during the study period around a relatively constant

average. The estimate for � for part-time workers jumps from the values indicated in fig. 2

to 0.97 in the 1970s. Consistent with the trend in fig. 2 (top left panel), the exponential

weight for PT workers declines, but only modestly from 0.97 to around 0.93 by the end of the

study period. Thus our first finding is that income observations associated with PT workers

are overwhelmingly likely to fall in the exponential component.
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Figure 6: Conditional exponential component weights conditional on worker type (scale for “Full-Time”
workers given on right y-axis).

Interpreting the conditional weight of the exponential component as a propensity for a
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specific worker type to fall in the exponential component, we can interpret the estimation

results as follows. The estimated parameter for �1 in (5) (the di↵erence in the propensity

to be in the exponential component between PT and FT workers) is negative and highly

statistically significant for all years. It varies between -0.83 to -0.87, suggesting that the

propensity for a FT worker to fall in the exponential component declines from around 11%

in the 1970s to just under 6% by 2017 (see the dashed line in fig. 6 read against the right-side

y-axis).

The decline in the propensity of full-time workers’ earnings to be captured by the expo-

nential component in the mixture is greater in absolute terms and much more dramatic in

percentage terms compared to the modest decline in �0 in (5) over time. Hence, the relative

propensity of a full-time worker’s earnings to be in the exponential component has decreased

significantly over the study period, and this is likely driving the observed decline in � in fig. 2.

The result is striking given that the mode (and mass) of the log-normal component shifted

left towards lower incomes between 1974 and 2016 as illustrated in fig. 5, yet the exponential

component is almost entirely populated by earnings from individuals identified as part-time

workers by 2016. In so far as PT workers are more likely to be younger, people of color, and

women, based on these results we would expect to find statistically significant correlations

with � and race, gender, and age in future work. However, some caution is warranted in

interpreting these results because the worker type distinction used in this analysis is based

on an administrative variable that codes worker’s who report working less than 35 hours per

week on average as part-time. Specifically workers with multiple part-time jobs that in total

work more than this are lumped together with full-time workers, which may distort some of

the analysis.
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Measures of Inequality

Economists study the distribution of income in order to provide a sound basis for public

policy that aims to reduce harmful social and economic e↵ects of inequality. Both earlier

empirical work on the dual-labor market (Reich et al., 1973, Osterman, 1975, Weitzman,

1989) and recent work on the dual structure of the US economy (Temin, 2017) suggests

that single summary statistics of income inequality are insu�cient for understanding the

relationship between policy and programs, and their distributional consequences.

The benefit of a segmented labor market approach is not only the ability to identify

distinct labor market segments, but also to identify a more detailed measure of inequality in

economy by examining the within and between inequalities of each component. Following

Dagum (1997) and Anderson et al. (2018) with a population of size N with total income Y

partitioned into K (possibly overlapping) subpopulations where n
k

represents the population

in the k

th group such that
P

k

n

k

= N and f

k

is the distribution function of kth group then,

letting the population share and income share in group k be p

k

= nk
N

and s

k

= µk

µ

, where

µ

k

is the average income in group k, and with G

k

representing the weighted Gini of the k

th

group, the total Gini coe�cient can be decomposed into three components:

G = G

w

+G

b

+G

t

(6)

Where

G

w

=
KX

k=1

p

2
k

s

k

G

k

(7)

measures the contribution of within subpopulation inequality to the total Gini,

G

b

=
1

µ

KX

k=2

k�1X

j=i

p

k

p

j

|µ
k

� µ

j

| (8)
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measures the contribution of between subpopulation inequality and

G

t

=
2

µ

KX

k=2

k�1X

j=i

p

k

p

j

Z 1

0

f

k

[y]

Z 1

y

f

j

[x](x� y)dxdy (9)

measures the contribution of the transvariation or overlap between subpopulations. In our

model k = 2, the population share is p1 = � and p2 = 1 � �, and f [x] = lgN[µ, �] and

f [y] = Exp[�]. Figure 7 shows the estimated contribution of each component of the Gini

decomposition.
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Figure 7: Within, between, and transvariation measures of the decomposed Gini coe�cient.

We directly estimate the overall, within, and transvariation component calculate the

between inequality as the residual G
b

= G � G

w

� G

t

. We can see the driver of the within

inequality component by examining the weighted Gini of each segment.

Presumably because we do not accurately capture very high income by not including a

power-law component in our mixture and because we focus only on income earned from labor,

the overall level of inequality reflected in the fitted model actually declines over the study

period. That is at least partially attributable to the decreasing weight of the exponential

component. (The exponential distribution has a constant Gini of 0.50, which is higher than

the inequality in the log-normal component.) However, inequality within the log-normal

component is rising rapidly over the study period.
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Figure 8: Total inequality and within segment inequality measured by the Gini coe�cient.

Because all three components of GINI are non-negative and 0  G

t

 G, we can follow

Anderson et al. (2018) and define a segmentation index which measures of the degree to

which constituent segments do not overlap:

SI = 1� G

t

G

=
2
µ

P
K

k=2

P
k�1
j=1 pkpj

R1
0

f

k

[y]
R1
y

f

j

[x](x� y)dxdy

1� 1
µ

R1
�1(1� F [x])2 dx

(10)
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Figure 9: Estimated segmentation index.

Because the transvariation measure in Figure 7 is declining we see that the segmentation

index is rising, implying that the upper segment represented by the log-normal component is
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being pulled further to the right. This picture appears consistent with the findings of Piketty

(2014) who shows the income share of the top earners as increasing dramatically after 1990.

Conclusion

The search for the best functional fit for the observed distribution of income has often

ignored fundamental di↵erences in income generating mechanisms across labor markets. The

concept of a homogeneous labor market naturally leads to explanations of the variation in

income as arising from individual characteristics. This conceptualization of a labor market

process operating uniformly on all individuals leads to the modeling of the income distri-

bution in a single encompassing functional form. The theory of labor market segmentation

identifies qualitative di↵erences between various labor market processes and has a natural

interpretation in finite mixture models. In this paper we have demonstrated the usefulness

of finite mixture modeling for analyzing a heterogeneous labor market incorporating the

complexities of the various functional forms that arise from theoretical considerations.

Using restricted-access Census data, our initial results indicate that the exponential-log

normal mixture model provides a stable fit to the distribution of income for the period 1975-

2017. Furthermore, we find that the parameter evolution clarifies details of the changing

distribution of income over this period. Most notably, incomes captured by the log-normal

component become more dispersed. The exponential component’s relative contribution to

the mixture appears to shrink while the mean and median income of that component de-

creases considerably.

Most significantly, we show that the exponential component is associated with part-time

workers, supporting our prior that it represents the labor market for workers supplying basic

labor and facing highly variable hours of work.

Decomposing the Gini coe�cient, we also demonstrate that labor markets are becoming

more segmented as indicated by the rising segmentation index. This segmentation appears
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to be worsening considerable since 1990 in line with the rising income share of top income

earners.

Appendix A: Data

Data is made available through the Rocky Mountain Federal Statistical Research Data

Center (RDC) project #1935. Summary statistics from the model are presented in following

table.

YEAR N OBS POP EST A SE A BETA SE BETA MU SE MU SIG SE SIG
1974 62000 97400000 0.36 0.00 1763 33.40 9.11 0.01 0.56 0.00
1975 60500 96800000 0.37 0.00 1982 39.30 9.18 0.01 0.56 0.00
1976 73500 99400000 0.36 0.00 2088 40.30 9.25 0.01 0.57 0.00
1977 72500 101900000 0.36 0.00 2249 46.60 9.31 0.01 0.58 0.00
1978 73500 105000000 0.36 0.00 2545 54.00 9.39 0.01 0.58 0.00
1979 87000 108800000 0.34 0.00 2796 63.40 9.46 0.01 0.59 0.00
1980 87000 109500000 0.34 0.01 3084 73.00 9.55 0.01 0.59 0.00
1981 77500 110200000 0.34 0.00 3274 75.20 9.63 0.01 0.59 0.00
1982 76000 109400000 0.32 0.00 3082 69.70 9.66 0.01 0.62 0.00
1983 76000 110800000 0.31 0.00 3158 68.10 9.71 0.01 0.61 0.00
1984 77500 114400000 0.31 0.00 3303 71.60 9.76 0.01 0.62 0.00
1985 76500 117000000 0.32 0.00 3703 81.90 9.83 0.01 0.62 0.00
1986 76000 118800000 0.29 0.00 3475 76.20 9.84 0.01 0.64 0.00
1987 76500 120800000 0.31 0.00 4219 101.70 9.91 0.01 0.62 0.00
1988 72000 123000000 0.30 0.00 4294 101.40 9.95 0.01 0.63 0.00
1989 78500 124400000 0.29 0.00 4611 116.80 9.99 0.01 0.64 0.00
1990 77500 124600000 0.30 0.01 5095 147.10 10.02 0.01 0.63 0.00
1991 76000 124700000 0.31 0.01 5727 191.60 10.07 0.01 0.63 0.00
1992 75000 126100000 0.30 0.01 5507 164.10 10.09 0.01 0.64 0.00
1993 72500 127400000 0.23 0.00 3851 84.20 10.04 0.00 0.70 0.00
1994 72500 129900000 0.22 0.00 4100 100.30 10.06 0.01 0.72 0.00
1995 64500 132900000 0.22 0.00 4195 96.50 10.10 0.00 0.70 0.00
1996 65500 135500000 0.22 0.00 4462 106.50 10.13 0.00 0.71 0.00
1997 65000 135400000 0.21 0.00 4540 109.10 10.17 0.00 0.71 0.00
1998 65500 137200000 0.21 0.00 5396 148.20 10.24 0.01 0.70 0.00
1999 67500 140100000 0.20 0.00 4984 124.80 10.25 0.00 0.72 0.00
2000 65000 141000000 0.18 0.00 5049 131.40 10.29 0.00 0.73 0.00
2001 107000 143000000 0.17 0.00 4830 117.70 10.31 0.00 0.74 0.00
2002 105000 143000000 0.16 0.00 4913 121.40 10.33 0.00 0.74 0.00
2003 103000 142800000 0.17 0.00 5230 134.30 10.36 0.00 0.73 0.00
2004 101000 143900000 0.17 0.00 5292 136.70 10.38 0.00 0.74 0.00
2005 101000 145900000 0.16 0.00 5235 134.50 10.40 0.00 0.74 0.00
2006 100000 148000000 0.15 0.00 5220 134.80 10.43 0.00 0.75 0.00
2007 101000 149400000 0.16 0.00 6458 189.90 10.49 0.00 0.72 0.00
2008 101000 149300000 0.17 0.00 6452 187.80 10.50 0.00 0.74 0.00
2009 98500 145700000 0.18 0.00 6814 214.80 10.51 0.01 0.75 0.00
2010 95500 144300000 0.18 0.00 7205 244.20 10.53 0.01 0.74 0.00
2011 93500 145700000 0.15 0.00 6115 180.90 10.52 0.00 0.77 0.00
2012 94500 148300000 0.15 0.00 6181 180.50 10.54 0.00 0.77 0.00
2013 93500 149800000 0.15 0.00 6351 193.80 10.56 0.00 0.76 0.00
2014 93000 151200000 0.14 0.00 6052 178.30 10.57 0.00 0.77 0.00
2015 87000 154100000 0.13 0.00 6213 177.90 10.61 0.00 0.77 0.00
2016 87500 155700000 0.13 0.00 5964 156.20 10.64 0.00 0.78 0.00

30



����

����

����

����

����

����

����

����

����

0 20000 40000 60000 80000 100000 120000 140000

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 10: Evolution of mixture model and individual components
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Figure 11: Relative propensity for a full-time worker to be part of the exponential component of the
mixture.

Appendix B: Price-adjusted Parameters

The adjustment from nominal to real values to which the mixture model boils down to

multiplying the nominal values by some price-adjustment factor, c. (In our adjustments, c

is the ratio of CPI for the base year to current year, but any other index would obviously

imply the same operation.) The question thus is simply how the parameters are a↵ected
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when we transform a random variable X to Y = cX, which turns out to be straightforward.

If the pdf of X is p
X

[x, ✓], then

p

Y

[y, c, ✓] =
1

c

· p
X

[y/c, ✓]

In the specific case of the exponential distribution, where p

X

[x, �] = 1
�

exp
h
�x

�

i
, this

transformation implies that p
Y

[y, c, �] = 1
c�

exp
h
� y

c�

i
. Or alternatively, if X ⇠ Exp[�] then

Y ⇠ Exp[c �]. Similarly, it is trivial to work out that if p
X

[x,�, �, µ, �] = �Exp[�] + (1 �

�) lgN[µ, �], then

p

Y

[y, c,�, �, µ, �] = �Exp[c �] + (1� �) lgN[µ+ ln c, �]

In other words, the only implication of transforming the underlying values from nominal to

real is that the scale parameters should adjust so that � ! c � and µ ! µ+ ln c.

Since we consider alternative fits in the course of this research, it is worth noting that the

same applies to other distributions commonly used in this context. For example, the Gamma

distribution (X ⇠ �[a, b] then Y ⇠ �[a, c b]), the Dagum distribution (X ⇠ Dag[p, a, b] then

Y ⇠ Dag[p, a, c b]), and the generalized Beta distribution of the second kind (or GB2; X ⇠

GB2[p, q, a, b] then Y ⇠ GB2[p, q, a, c b]). Notably, for each of these the a↵ected parameter

does not a↵ect the kurtosis of the distribution, so the fatness of the tail is una↵ected by the

scale translation of changing underlying values from nominal to real.

Appendix C: Simple Earnings Models

Here we briefly outline the core argument for how a log-normal and exponential distribu-

tion of earnings might arise. First, we focus on the log-normal and Gibrat’s Law. However,

our focus is the position that an individual occupies in a given firm, not the individual who

occupies it at any given moment. The reason is twofold: the position is likely longer-lived
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than any individual’s tenure at the firm (possible longer than any individual’s lifetime) and

we would expect strong correlation of remuneration for any individual(s) occupying that po-

sition from one period to the next. (We are purposefully non-committal as to whether there

is substitutability between positions as there might be in a neoclassical setup or if positions

appear in fixed proportions within a given firm.)

The point is that a given firm requires a certain set of positions to be filled and pay

associated with each is determined by the role of that position within the firm’s production

process. Initially, that pay is y0. From one period to the next, the pay to each position

is adjusted and we let the adjustment be some random percentage increase, ✏
t

, from the

original pay. So period 1 pay is:

y1 = (1� ✏

t

) y0

and after T periods, y
T

=
Q

T

t=1 (1� ✏

t

) y0. The heroic assumption on our part is that

each ✏

t

is i.i.d. with mean m and variance �

2
< 1. To see how heroic this assumption is

consider everything that is being included in the stochastic raise: cost-of-living adjustments,

specific pay adjustments for hiring an over- or underqualified person to fill the position

(i.e. the individual characteristics of the individual filling the position and thus changes in

the individual filling the position), changes in technology that result in a revaluation of the

relative contribution of the position to production, etc. Lumping these things together and

considering them random while also postulating that across positions they are i.i.d. makes

✏

t

a very comprehensive catch-all.

Given that assumption and furthermore assuming that m is small (much closer to zero

than to unity; practically less than 0.1), we can make the usual simplification by taking the

log of the above expression and then approximating ln (1 + ✏

t

) ⇡ ✏

t

.
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ln y
T

=
TX

t=1

t ln (1� ✏

t

) + ln y0 ⇡
TX

t=1

✏

t

+ ln y0

Applying the Central Limit Theorem, we can make the case that ln y
T

will be approxi-

mately normally distributed. Furthermore, the initial value y0 will play a vanishingly small

role in determining the mean of the distribution as long as T ·m >> y0. In other words, far

from the inception period, the distribution of pay associated with di↵erent positions is more

determined by the stochastic evolution over many periods than their original pay based

on their relative contribution to production. Here it is important, however, to remember

that the stochastic evolution itself included technological changes that rearrange the relative

value of di↵erent position within the production process. To put it concretely, a position that

started as a highly paid job might well end up towards the lower end of the pay spectrum

if technological change has made the particular skillset close to obsolete over the years. We

are treating that evolution as part of the “random” shocks ✏
t

. The end result is that y
T

is

asymptotically log-normally distributed and this distribution holds for a number of di↵erent

positions across the economy as long as the associated specific starting salaries associated

with them are small compared to the accumulated e↵ects of cost-of-living pay adjustments,

technological change, etc.

Maintaining a similar focus on positions at firms that are longer lived than individuals

(or anyway their tenure in a specific position), we now turn to the exponential distribution.

We posit that there is some work that can be done by any employee and e�cacy with which

it is done is the same across employees. The only thing that matters for these tasks is that

the work gets done, not by whom or their particular skill set. In very short time frames,

the total work of this nature is probably a fixed amount at the firm level. So maybe we can

imagine routinized service work that fundamentally amounts to little more than having an

employee behind the counter during open-for-business hours.
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Formally, it may be very di�cult to assign remuneration to this type of work because it

has a discrete impact on firm operations. If it does not get done, none of the other productive

activity succeed and its marginal contribution is infinite; if it gets done, production succeeds

and any more of it leads to no more production so that it’s marginal contribution is zero.

Some firms may solve this problem by enticing or coercing existing employees in positions

not dedicated to such tasks to complete such them in addition to their direct responsibilities

essentially for free (or very low pay). Other firms, particularly in the service sector, may hire

part-time employees who are essentially interchangeable and with overall su�ciently flexible

schedules that these basic tasks can always be covered. If one employee is not available,

another gets their hours that week, for example.

In very short time frames, the total amount of time required for these tasks across em-

ployees is fixed and furthermore changes between short periods appear like a binary exchange

in hours between workers. Finally, if the workers filling these kinds of positions are paid ap-

proximately the same (which would almost certainly be the case within each establishment,

but is likely to even hold across establishments), then this all amounts to an argument how

an exponential distribution of earnings among these workers might arise.

Formally, the argument from physics that applies here is that the number of hours any two

employees (among many) supply is determined by their respective probabilities of agreeing

to work a certain number of hours, x1 and x2 respectively. We assume that the probability

functions are the same for each employee, so that the probability of them together working

x1 + x2 hours is f [x1] · f [x2]. On the other hand, the total amount of time required is

fixed, X, and thus the particular combination of x1 + x2 implies that the overall scheduling

arrangement must be such that X� (x1 + x2). If all scheduling arrangements are considered

equally likely, then the probability of such an overall scheduling arrangement must be equal

to the probability of x1 + x2. Thus, the probability distribution function we are looking for

has the property that:
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f [x1] · f [x2] = h (x1 + x2)

The only function that will satisfy this equality is the exponential, thus suggesting that

the choice of hours across employees will have follow an exponential distribution. Further-

more, if all such employees are paid the same wage, then their earnings distribution will

also be exponential. The key to making this line of reasoning plausible is that the required

schedule fluctuations amongst employees happen at a much faster time scale than changes

in the aggregate hours of basic routine work across business. As we have presented it, we

envision schedule changes week-to-week and suspect that total hours required change no

faster than quarterly and maybe only annually. Thus the “churn” in schedules is 10 to 50

times faster than growth in the aggregate constraint.
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